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Abstract 

Medical image segmentation is a critical component in a wide range of clinical applications, enabling the identifica-
tion and delineation of anatomical structures. This study focuses on segmentation of anatomical structures for 3D 
printing, virtual surgery planning, and advanced visualization such as virtual or augmented reality. Manual segmen-
tation methods are labor-intensive and can be subjective, leading to inter-observer variability. Machine learning 
algorithms, particularly deep learning models, have gained traction for automating the process and are now consid-
ered state-of-the-art. However, deep-learning methods typically demand large datasets for fine-tuning and powerful 
graphics cards, limiting their applicability in resource-constrained settings. In this paper we introduce a robust deep 
learning framework for 3D medical segmentation that achieves high performance across a range of medical segmen-
tation tasks, even when trained on a small number of subjects. This approach overcomes the need for extensive data 
and heavy GPU resources, facilitating adoption within healthcare systems. The potential is exemplified through six 
different clinical applications involving orthopedics, orbital segmentation, mandible CT, cardiac CT, fetal MRI and lung 
CT. Notably, a small set of hyper-parameters and augmentation settings produced segmentations with an average 
Dice score of 92% (SD = ±0.06) across a diverse range of organs and tissues.
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Introduction
Medical image segmentation is essential for numer-
ous clinical applications, such as quantification and 
visualisation, which enable improved diagnostics and 
advancements in medical research. This study focuses on 
segmentation of anatomical structures for 3D printing 

and advanced visualization such as virtual or augmented 
reality [1].

Manual or semi-automated segmentation is a tedious, 
resource intensive task that leaves room for user error 
and variability [2]. Therefore, there has been consider-
able interest in the development of automated segmenta-
tion algorithms over the past decade [3]. The main focus 
of the automation is to decrease manual work required 
to do high quality segmentation. Ultimately, the user is 
responsible to ensure accuracy and make manual adjust-
ments if necessary.

During the last decade, deep convolutional neural net-
works (CNNs) have consistently surpassed hand-crafted 
segmentation algorithms in performance [4] . One of the 
most widely used networks is the 2D U-Net architecture 
[5]. The 2D U-Net architecture is capable of segmenting 
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3D medical images by segmenting the volume slice by 
slice. Consensus techniques, which are well-established, 
comprise independently segmenting each voxel along 
three orthogonal directions-axial, sagittal, and coronal-
and subsequently combining these predictions to deter-
mine the final voxel value [6, 7]. Further, the U-Net 
architectures have been expanded to a 3D version [8], 
allowing for full volumetric segmentation, and to the gen-
eralised nnU-Net framework [9]. The latter automatically 
configures a U-Net network and adjusts hyperparameters 
based on the training data. The nnU-Net framework has 
excelled in a multitude of segmentation challenges [9].

Despite notable advancements and high performing 
algorithms, many automatic-segmentation algorithms 
have not been clinically implemented due to various fac-
tors [10]:

• CNN-based segmentation approaches typically 
require large training datasets to achieve accuracy 
levels that offer clinical benefits, meaning that the 
combination of automated segmentation and manual 
corrections result in significant time savings com-
pared to using manual segmentation alone.

• Automated segmentation algorithms need to be 
combined with efficient methods for manual seg-
mentation to allow the user to correct potential 
errors.

• The algorithms need to be incorporated into systems 
that fits with the clinical routine and interface with 
hospital PACS systems.

• Stringent regulatory requirements mandate both val-
idation and adherence to a certified quality manage-
ment system throughout the development process.

• Many hospitals lack powerful compute servers, cre-
ating a need for algorithms capable of running on 
standard consumer-grade gaming graphics cards. An 
alternative approach is to utilize cloud-based solu-
tions, however such strategies comes with complex-
ity in terms of cyber-security and data integrity con-
cerns.

To address several of these clinical translation challenges, 
we propose a generic framework for 3D medical image 
segmentation where the aim is to streamline develop-
ment of CNN-based segmentation algorithms for dif-
ferent clinical applications and minimize the time and 
resources needed for clinical deployment. Key features of 
the framework include:

• Data efficiency and high performance using limited 
training data.

• Pre-configured settings requiring little or no hyper-
parameter tuning for optimal performance.

• Computational efficiency, allowing the inference to 
be run on standard consumer-grade graphics cards.

• Easy adaptation of regulatory submissions for new 
applications by using the framework both for training 
and inference procedures.

• The difference between clinical applications is only 
driven by different training and testing data.

To demonstrate the framework’s general applicability to 
different segmentation tasks, we trained and evaluated 
its performance across six distinct segmentation tasks, 
each presenting specific challenges, modality and tissue 
types. The tasks are all within the field of 3D printing but 
the methods are applicable to other fields such as visu-
alization, or quantification. Further details on the cohorts 
and the specific clinical applications are provided in the 
Cohorts section.

Methods
Network architecture
The used underlying network is the standard 2D U-Net, 
which was chosen as it is the most widely used CNN 
for medical image segmentation [5]. An overview of the 
inference workflow is shown in Fig.  1. Our approach 
uses Mathworks implementation of the network, which 
adheres to the core network structure but allow for cer-
tain configurable aspects. Our network employs an 
encoder, with 3x3 convolutional filters and ’same’ pad-
ding, preserving the input dimensions throughout the 
network, consistent with the original design. While the 
foundational architecture is unchanged, one difference 
in our approach is that we segment images in smaller 
patches rather than full volumes, which optimizes mem-
ory usage without affecting the accuracy of segmentation. 
Thus, while our model remains largely consistent with the 
U-Net proposed by Ronneberger et al., these minor mod-
ifications-such as patch-based segmentation and flexible 
hyperparameters-are introduced to enhance computa-
tional efficiency and adaptability to various input sizes.

Initially, the image volume is resampled to isotropic 
image resolution determined by the highest resolution 
in-plane or through plane of the original DICOM data. 
The image volume is thereafter divided into three stacks 
of 2D images in the transversal, sagittal and coronal 
direction. The segmentation is performed with a single 
2D U-Net applied to the separate stacks of 2D images. As 
the U-Net has a fixed input and output image size, each 
slice is subdivided into patches of uniform size. The final 
result is achieved by averaging the probabilities from 
each stack of 2D patched slices. This strategy enables a 
lightweight and efficient 2D U-Net to perform a 3D clas-
sification task. By using three orthogonal directions, 3D 
information is implicitly incorporated into the model. 
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The framework was implemented in Matlab R2022a 
(Mathworks, USA) and was incorporated into the clini-
cally available software Segment 3DPrint (Medviso AB, 
Lund, Sweden).

Training and data augmentation
In the training process, a stack of images from either CT 
or MR scans were fed to the network and weights and 
biases were adjusted by optimizing a cross entropy loss 
function using the standard Adam optimizer. The image 
volumes were then divided into multiple 128x128 pixel 
patches with specified overlaps to ensure comprehen-
sive coverage. The patches were extracted from slices 
intersecting the same 3D positions, ensuring that each 
region is segmented multiple times. The overlap between 
patches guarantees that boundary areas are not missed. 
In order to improve network performance, enhance 
generalization, and reduce the amount of training data, 
augmentation was used when extracting the patches. All 
applications used the same augmentation with minimal 
modifications1. Augmentations were primarily applied 
to individual patches, except for global rotation aug-
mentation, which rotates the entire initial volume before 
patch generation. The complete list of augmentations is 
provided in Table  1. It is worth noting that no mirror-
ing or transposing operations were applied when train-
ing the mandible network. This decision was deliberate, 
as for this application the positioning and orientation 
of the mandible relative to the rest of the skull is crucial 

information for the network to effectively distinguish 
between them. Indeed, both classes consist of the same 
tissue types, resulting in similar intensity levels on CT 
images and in the corresponding patches. In contrast, 
for other multiclass networks such as the lung and tra-
chea network, each class comprises different tissue types 
with distinct attenuation properties, leading to varying 
intensity levels on CT images and patches. This variation 
facilitates classification, even in the absence of positional 
features. Settings for scaling and rotation were config-
ured according to the potential variation in scaling and 
rotation observed across different patients’ images. No 
tuning was performed after setting parameters in con-
sensus. Augmentation was performed differently for each 
epoch to avoid that the networked encounter the exact 
same patch more than once.

Hyper‑parameters
Fine-tuning hyper-parameters is a crucial step in obtain-
ing optimal segmentation results within any machine 
learning framework [11]. In our current framework, 
emphasis was placed on enhancing generalizability to 
facilitate adoption across diverse user domains. Conse-
quently, our aim was to identify hyper-parameters that 
could remain consistent across various application areas 
(Table 2).

Cohorts
Six cohorts were considered in this paper focusing on dif-
ferent segmentation challenges especially prominent in 
the field of 3D printing [12]:

• Skeletal structures

Fig. 1 Inference workflow. The 3D image volume is split into three stacks of 2D images in transversal, sagittal, and coronal directions, respectively. 
The same 2D U-Net CNN performs inference on all three stacks of 2D images. This results in three image volumes. The final voxel-wise classification 
is achieved by averaging the probabilities

1 The fetal application used slightly different hyper-parameters as this was 
the original application and we chose not to change the parameters based 
on our original publication.
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• Oculo-cranial structures
• Mandibulo-cranial structures
• Congenital heart defects
• Fetal anatomy
• Pulmonary-tracheal structures

An overview of the six cohorts is shown in Table 3. Most 
cases were drawn from individuals undergoing clinical 

procedures referred for generation of anatomical model 
to the 3D Centre of Skåne University Hospital. When 
collecting the cohorts we ensured to capture extensive 
diversity across anatomy, pathology, age, image resolu-
tions, scanners, and scanning parameters. This diversity 
was preserved when dividing the images into training and 
test datasets. All subjects were completely anonymized 
and the retained information only comprised approxi-
mate age at the time of scanning, sex, scanning param-
eters, and minimal details regarding anatomical region or 
primary pathology. The Swedish Ethical Review Author-
ity waived informed consent (Dnr 2021–03583) for these 
subjects. For each of the cohorts there is a supplemen-
tal file with detailed information on age, sex, pathology, 
image resolutions, and size of image volume. All image 
data was resampled to isotropic resolution. The used 
image resolution was the highest of either in-plane or 
through plane resolution of the original DICOM data.

Skeletal structures
The clinical application of this cohort is general bone 
segmentation. Typical 3D printing use cases are muscu-
loskeletal applications such as anatomical models; vir-
tual planning of osteotomy where cutting and drilling 
guides are designed. Other potential applications could 
be bone tumors or to locate other defects in relation to 
skeletal structures. The anatomical areas covered by 
the different cases is essentially the entire body, such as 

Table 1 Training augmentations

U denotes uniform random distribution within the given range

 aGlobal Rotation applied to the initial volume

 bMirroring Horizontally

 cMirroring Vertically

 dFor the mandible network : 0 %

 eFor the fetal network : 0 %

Augmentation Probability Distribution Unit

3D  Rotationa 0–50 % U(−20, 20) Degrees

2D Rotation 20–25 % U(−20, 20) - U(−45, 45) Degrees

Scaling 20–100 % U(0.7, 1.3) - U(0.6, 1.4) Factor

Mirroring H.b 50 %d,e - -

Mirroring V.c 50 %d,e - -

Transpose 50 %d,e - -

White noise 10–15 % U(0, 15 %) Of intensity range

Streak noise 10–20 %e U(0, 50 %) - U(0, 70%) Of intensity range

Brightness 15–25 % U(−30, 30) - U(−100, 100) HU

Contrast 15–25 % U(0.95, 1.05) - U(0.7, 1.3) - U(0.65, 1.5) Factor

Gaussian blur 25 % {3} Filter size (pixels)

Sharpening 15 % U(0.7, 1.3) Only fetal

Table 2 Hyper-parameters for Model Training

a For fetal network

 Patch size : 256

 Learning rate : 0.005

 Training/ testing type : 5-fold cross-validation

Hyper‑parameter Value

Patch size 128a

Learning rate 0.001a

Learning rate drop period 4 - 6

Learning rate drop factor 0.8 - 0.9

Encoder depth 4

Optimization method Adam

L2 regularization strength 1e-4

Gradient Threshold Method L2 norm

Gradient decay factor 0.9

Squared gradient decay factor 0.9990

Epochs 100

Minimum batch size 30 - 100

Training / testing type Hold-out a
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hand and shoulder, feet, ankle, spine, ribs and skull. The 
cohort includes a large range underlying pathology such 
as severe fractures, tumors, malunions, and scoliosis. In 
addition to subjects from Skåne University Hospital, 8 
cases were included from The Cancer Imaging Archive 
(TCIA) [13] in order to include older scans.

The specific challenge with this segmentation task is 
the large variability in the anatomy. Another challenge is 
that the ground truth bones are filled to not only include 
the cortical bone, but also the spongeous bone. For this 
segmentation task only one object class was used; bone. 
Typical examples of delineations are shown in Fig. 2.

Oculo‑cranial structures
The clinical application of the orbital cohorts is segmen-
tation of the thin orbital floor structure. During blunt 
skull trauma the orbital floor that holds the eyes may 
fracture resulting in the eye dropping down causing 
blurred vision and entrapped ocular muscles. Typically, 
an orbital floor fracture is fixed with either a bent thin 

titanium plate or a patient-specific orbital floor plate. In 
surgical preparation, a commonly employed technique 
involves segmenting the healthy orbit, when feasible, and 
mirroring it for the purpose of pre-bending a plate or 
manufacturing a patient-specific plate. However, manu-
ally segmenting the orbital floor is challenging due to its 
thin structure, which is often barely discernible on CT 
scans. Furthermore, we also included the eyes in the seg-
mentation task as this allows rapid detection if the blunt 
trauma have caused one of they eyes to drop. The under-
lying pathologies in the cohorts included skull trauma, 
orbital floor fractures, cranioplasty, and suspected stroke. 
For this segmentation task, two object classes were used; 
bone including the thin orbital floor, and eyes.

The specific challenge with this segmentation task is to 
properly segment the thin orbital floor. Typical examples 
of delineations are shown in Fig. 3.

Mandibulo‑cranial structures
Separation of the mandible and the maxilla is often 
required in surgical planning of maxillofacial cases. 

Table 3 Cohort information

Modality refers to imaging modality and train size refers to the number of patients used for training, and test size the number of patients used for testing

Anatomy Modality Train size Test size Application and anatomical region

Skeletal structures CT 3–40 13 Pre-surgical planning, creation of drilling and cutting guides. Data included ana-
tomical parts of the body such as head, shoulders, extremities, spine, pelvis, hands 
including radius and ulna, and feet. Knees were exclusively included in the test data-
set. Segmented object was bone structures where the bones were completely filled.

Oculo-cranial structures CT 21 10 Creation of anatomical models for pre-bending orbital floor implants, design 
of orbital floor implants and neurosurgical skull implants. Included object was bones 
including the orbital floor.

Mandibulo-cranial structures CT 19 10 Pre-surgical planning for mandibular reconstruction.

Congenital heart defects CT 32 10 Surgery planning before either surgical or catheter based intervention of congenital 
heart defect. Segmented structures were bones and intra-cardiac and cardiovascular 
blood pool.

Fetal anatomy MR 20 22 Improving prenatal diagnosis, the capability to estimate fetal weight and use this 
to normalize blood flow measurements.

Pulmonary-tracheal Structures CT 15 10 Pre-surgical planning of cardiac surgery or catheter interventions where it is often 
important to model the location of the trachea in conjunction to cardiovascular 
structures.

Fig. 2 Skeletal structure ground truth segmentations

Fig. 3 Oculo-cranial structure ground truth segmentations
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This splitting is often time consuming to perform 
manually, especially if a distance plate is not used to 
separate teeth, or when numerous artifacts are pre-
sent due to dental fillings or procedures. The under-
lying pathology in the study included skull trauma, 
orbital floor fracture, cranioplasty, orthogonathic sur-
gery and tumors. For the segmentation task two classes 
were used; mandible and cranium in which the latter 
included all bones except the mandible. Typical exam-
ples of delineations are shown in Fig. 4.

The specific challenge with this segmentation task is 
the separation between maxillary teeth from mandib-
ular teeth. This task requires that the network learns 
the shape and position of the mandible relative to the 
maxilla. Hence, during both training and inference only 
two orientations sagittal and coronal were used. This is 
because distinguishing the mandible from the rest of 
the cranium becomes nearly impossible when analyzing 
2D patches taken in the transversal plane.

Congenital heart defects
The data consisted of a wide range of congenital heart 
defect cases with an age distribution ranging from 1 day 
to 18 years old. The pathologies included a wide range 
of congenital heart defects such as tetralogy of Fallot, 
univentricles, major pulmonary artery connection, 
hypoplastic ventricles, double outflow ventricles and 
several types of ventricular septum defects. All images 
were acquired with intravenous contrast injected. For 
this segmentation task two classes were used; blood 
pool encompassing the chambers of the heart and con-
nected blood vessels with contrast and bone.

The specific challenge with this segmentation task is 
the large anatomical variations between patients. Addi-
tionally, the utilization of contrast introduced signifi-
cant differences in intensity levels for similar tissues. 

Indeed, the contrast distribution varies considerably 
based on multiple factors related to the patient, the 
contrast medium, how it is injected, timing between 
injection and imaging, and the CT scanner character-
istics [3]. Typical examples of delineations are shown in 
Fig. 5.

Fetal anatomy
The fetal application was included to show that the pro-
posed framework also work for MR images. The fetal 
cohort is the same cohort as presented by Ryd et  al. 
[14]. In summary, forty-two fetuses (gestational age 
36 (29–39) weeks) were included. Fetal MRI examina-
tions were performed both on clinical indication and 
for research aimed at developing fetal cardiovascular 
MRI. The cohort consisted of fetuses with and without 
known or suspected congenital heart disease. For this 
segmentation task four classes were used; fetus, pla-
centa, umbilical cord and amniotic fluid. The primary 
focus in the study was the fetus, however other intrau-
terine structures were added in order to enhance net-
work performance by providing additional information. 
Only the segmentation of the fetus will be investigated 

Fig. 4 Mandibulo-cranial structure ground truth segmentations

Fig. 5 Congenital heart defect ground truth segmentations

Fig. 6 Fetal anatomy ground truth segmentations
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in this paper. The regional ethics committee approved 
the study (Dnr 2013/551). All pregnant women gave 
written informed consent before participation in the 
study. Typical examples of delineations are shown in 
Fig. 6.

Pulmonary‑tracheal structures
The clinical use case for this segmentation task is visuali-
sation and 3D printing of pulmonary disease pathologies 
as well as for cardiovascular applications where it often 
is of high importance to see the location of the trachea 
in relation to the great arteries. Specific examples in con-
genital heart defects are aortic rings or instances where 
vessels impede airflow in the trachea. The training data 
consisted of 15 patients with a wide range of clinical con-
ditions. Examples of the clinical conditions included are 
intracranial aneurysm, lung cancers, esophagus atrophy, 
brachialis compression on trachea, aortic coarctation, 
aortic ring, and several congenital heart defect cases. 11 
out of 15 data sets had contrast on board. The test cases 
comprised 10 patients and the pathologies included a 
tumour on the trachea, two lung cancer data sets, five 
congenital heart defects, including one case with aortic 
ring, and two adolescents with congenital heart defects 
where one had a pacemaker. Out of the 10 test sets 7 
had contrast onboard. For this segmentation task three 
classes were used; lung tissue, lung vessels (blood vessels 
inside the lungs), and trachea. Testing was performed on 
lung tissue and trachea, separately.

The specific segmentation challenges for this cohort 
were the separation of the lungs and the distal branches 
of the trachea. The inclusion of this segmentation task 
also serves a second purpose; to evaluate the behaviour 
of the proposed framework to perform under severe class 
imbalance, where the trachea was only 1.8%±0.7% of the 
lung volume. The third challenge with the cohort is that 
for some data sets there was contrast injected and for 

other datasets no contrast was used. Typical examples of 
delineations are shown in Fig. 7.

Image acquisitions
Imaging was performed on all of the following CT ven-
dors, Siemens, Philips, General Electric (GE), and 
Toshiba/Canon. The used scanner and image resolution 
for each case is given in the supplemental material. All 
fetal MRIs were performed using a balanced steady-state 
free precession sequence on a 1.5 T Aera scanner by Sie-
mens Healthineers in Erlangen, Germany.

Ground truth labeling
Manual segmentations of the tissues were performed 
using Segment 3DPrint v4.0 (Medviso AB, Lund, Swe-
den). The manual segmentation consisted of a semi-auto-
matic approach such as thresholding and morphological 
operations. Subsequently, extensive manual corrections 
and adjustments were performed slice by slice and by 
using a 3D pen tool. All data sets were reviewed by a 
second observer and the delineations were used as both 
ground truth for training of neural networks as well as for 
evaluation of network performance. There are no overlap 
of data between test and training data.

Post processing
For all applications, the objects were filled and objects 
smaller than 0.1ml were removed. The framework 
includes a possibility to set three configurable processing 
parameters, see Table 4. 

Increased probability threshold
The network outputs for each class including the back-
ground a likelihood of belonging to a specific class. The 
likelihoods sum up to 1 if the background is included. 

Fig. 7 Pulmonary-tracheal structure ground truth segmentations

Table 4 Post-processing settings for various structures

First column show the required probability to classify a voxel to belong to 
the class. Second column show at most how many objects of the class that is 
expected. Third column determines if objects of a class is required to touch 
objects of another class

Name Probability 
threshold

n‑largest 
object

Touch other objects

Skeletal 50% - No

Orbita 12.5% 1 No

Eyes 12.5% 2 No

Mandible 50% 1 No

Cranium 50% 1 No

Congenital 25% 1 No

Fetal 50% 1 No

Parenchyma 50% 2 No

Trachea 50% 1 Yes, Parenchyma
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By default, however, if the likelihood of belonging to one 
class is larger than 50% then this pixel is said to belong 
to the specific class class. Three different thresholds 
were considered (i.e 50%, 25%, and 12.5%). The threshold 
selection was based on testing on the training data and 
no adjustments were made based on the test data.

Selection of the n‑largest object
The most frequently used post processing was selection 
of the n largest object(s). This was used for applications 
where we from anatomical a priori information only 
expect one or two contiguous objects. For instance we 
expect to find at most two eyes and thus use this setting 
to remove small outlier objects. Object connectivity 
was computed using a standard 26-connectivity.

Touch other objects
The generic post processing allows to require that 
objects touch each other to be included. The setting of 
this parameter was decided from anatomy, the trachea 
is the only one of the classes that is required to touch 
another object (parenchyma).

Number of training data required
In order to test the limits of how few subjects are 
needed to achieve good results, multiple models were 
trained for the skeletal structure application. Using 
training set sizes of 3, 5, 10, 20, and 40 subjects, 
five different models were created and tested on the 
same ground truth data set (n=13). A comparison of 
patient-level performance between the networks were 
performed and specific cases were also evaluated to 
determine the effect of being included in the training 
data. This was achieved by comparing the n=3 model 
and the n=40 model on a on a per-patient basis using 
Jaccard scores. Expanding on this topic, it was exam-
ined for which cases the Jaccard score was improved 
the most, hypothesising that an increase in Jaccard 
score after an increase in training data size depend on 
initial score.

To explore the generalizability of the model, a scan 
of a patient’s knee was included in the test set whereas 
knees were on purpose excluded from the training data 
set. Thus, the model had to perform inference without 
prior exposure to this type of anatomy, which is known 
as ’zero-shot’ inference.

Model evaluation and statistical analysis
Volume‑based analysis
Dice and Jaccard scores were calculated according to 
Eqs. 1 and 2.

where TP refers true positive and FN  to false negative. In 
the case of segmentation we define a true positive value 
to be a correctly labeled voxel.

Surface‑based analysis
In the surface-based analysis, the exterior surfaces of 
both the ground truth and network-segmented models 
were determined. For every point on the ground truth 
surface, the distance to the nearest point on the network-
segmented surface was computed utilizing triangula-
tion. Subsequently, the evaluation was conducted on the 
95th percentile of both signed and absolute surface dis-
tances. The sign of the distances was derived from the 
normal vector of the ground truth surface. A value of, for 
instance, 1 mm should be interpreted as “for 95 percent 
of surface, the spatial deviation between the ground truth 
segmentation and the automatic process does not exceed 
1 mm”.

Failure mode analysis
In order to investigate potential causes of poor segmenta-
tion we looked at data sets with the lowest Dice score for 
each of the six tasks. 

Results
Visualization of median performing segmentations is 
shown in Fig.  8. Steps of the post processing procedure 
is shown in Fig.  9.  Results of network inference on test 
data for the different clinical use cases can be seen in 
Table 5 and in in Figs. 10, 11, 12, 13, 14, 15, 16, 17 and 18. 
On average, the networks segmented a 256x256x256 pixel 

(1)Dice Score =
2TP

2TP + FP + FN

(2)Jaccard Score, IoU =
TP

TP + FP + FN

Fig. 8 Visualization of median performing segmentations
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Fig. 9 Steps of the post processing procedure
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Table 5 Evaluation metrics 

Structure Dice Score ± SD Jaccard Score ± SD 95%‑tile dist. (mm) ± SD Median 
dist. (mm) 
± SD

Skeletal Structures 0.94 ± 0.06 0.89 ± 0.10 0.75 ± 0.76 0.24 ± 0.23

Oculo-Cranial Structures

 Orbita 0.91 ± 0.03 0.84 ± 0.05 1.06 ± 0.82 0.30 ± 0.16

 Eyes 0.88 ± 0.03 0.79 ± 0.05 2.08 ± 0.67 0.65 ± 0.21

Mandibulo-Cranial Structures

 Mandible 0.96 ± 0.02 0.93 ± 0.04 0.69 ± 0.76 0.13 ± 0.04

 Cranium 0.95 ± 0.02 0.91 ± 0.04 0.56 ± 0.22 0.12 ± 0.06

Congenital Heart Defects 0.91 ± 0.04 0.84 ± 0.06 11.07 ± 8.16 0.17 ± 0.08

Fetal Anatomy 0.95 ± 0.02 0.90 ± 0.03 4.65 ± 1.70 1.17 ± 0.34

Pulmonary-tracheal structures

 Parenchyma 0.97 ± 0.02 0.94 ± 0.04 1.00 ± 1.09 0.19 ± 0.08

 Trachea 0.82 ± 0.16 0.71 ± 0.20 3.71 ± 5.42 0.31 ± 0.22

Fig. 10 Per-patient performance for skeletal structure segmentation. Striped bars show Dice score and solid bars show Jaccard score

Fig. 11 Performance versus number of cases used for training 
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volume in 10.10 s on a gaming laptop (Alienware, NVIDIA 
Ti 3080 GPU). For the skeletal segmentation task, five 
separate models were trained on different sizes of train-
ing set. Results from these tests are shown in Table 6 and 
in Fig. 11. Figure 12 shows the calculated difference of the 
model trained on three patients versus the model trained 
on forty patients, of which the smaller training set was 
part of the larger. Which patients in the test data that ben-
efited the most by expanding the training set was analysed 
by evaluation of improvement in Jaccard score, shown in 
Fig.  13. Furthermore, a zero shot analysis was performed 
on a specific patient from this orthopedic use case, namely 
patient 10 (see Fig. 10). This zero shot analysis yielded Dice 
score of 0.95 and Jaccard score of 0.91. Figures 19 and 20 

illustrates the resulting segmentations of the lowest scoring 
segmentations.

Discussion
The proposed framework demonstrates high medical 
image segmentation performance across various tasks 
despite being trained on a relatively small number of 
subjects. Evaluation metrics in Table 5 show the perfor-
mance of models trained on different clinical use cases. 
Even though the number of subjects used for training 
was merely in the tens, the models achieved an average 
Dice score of 0.92 (SD = ±0.06) and a Jaccard score of 
0.86 (SD = ±0.08) over all cases.

It is likely that with different architectures and tun-
ing of hyper-parameters a slightly increased result could 

Fig. 12 Difference between model trained with 40 patients, "n=40 model", versus model trained using 3 patients, "n=3 model". Positive values 
show higher performance when trained with more training data
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Fig. 13 Improvements vs. Jaccard score. X-axis show Jaccord score for "n=40 model" and the y-axis the difference between "n=40 model" 
versus the "n=3 model". Positive values is indicative of higher performance when trained with more training data

Fig. 14 Per-patient performance on orbital segmentation. Left panel shows results for the class orbita, and right panel shows the results 
for the class eyes. Note that low scores are not consistent between patients, such as for patient #3 there is a low score for the class orbita, whereas 
for patient #6 there is a low score for the class eyes 

Fig. 15 Per-patient performance on mandibulo-cranial structure segmentation. Left panel shows the result from the class mandible, right panel 
shows the result from the class cranium 
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Fig. 16 Per-patient performance for congenital heart defects. Striped bars show Dice score and solid bars show Jaccard score

Fig. 17 Per-patient performance for fetal anatomy. Striped bars show Dice score and solid bars show Jaccard score 

Table 6 Evaluation metrics of skeletal structure application trained with different training data set sizes

Number of Patients Dice score ± SD Jaccard score ± SD 95‑%tile dist. (mm) ± SD Med. dist. (mm) ± SD

3 0.92 ± 0.08 0.86 ± 0.12 0.78 ± 0.78 0.27 ± 0.24

5 0.92 ± 0.07 0.85 ± 0.11 0.98 ± 1.26 0.26 ± 0.22

10 0.94 ± 0.05 0.89 ± 0.08 0.73 ± 0.76 0.25 ± 0.22

20 0.93 ± 0.09 0.87 ± 0.13 0.79 ± 0.91 0.23 ± 0.23

40 0.94 ± 0.06 0.89 ± 0.10 0.75 ± 0.76 0.24 ± 0.23
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be achieved. However, a slight improvement in perfor-
mance may be of little clinical relevance. What is of clini-
cal relevance though, is that the accuracy is high enough 
to translate to significant time savings. This also puts 
an emphasis in the interaction with an automated seg-
mentation algorithm and efficient tools for manual cor-
rections. Furthermore, it is important that the number 
required subjects are low so that software developers 

with reasonable effort can add new models. Specifically, 
in field of clinical 3D printing there is a long and growing 
list of applications which each ideally should have their 
own specific segmentation algorithm to save time and 
work in the clinical routine.

Fig. 18 Per-patient performance for pulmonary-tracheal structures. Striped bars show Dice score and solid bars show Jaccard score 

Fig. 19 Lowest scoring segmentations in the categories Skeletal Structures, Oculo-Cranial Structures and Mandibulo-Cranial Structures. Left 
column shows a representative DICOM slice, middle column shows automated segmentation results including post-processing, and the right 
column shows the manual segmentation 
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Interpretation of segmentation metrics
There are numerous challenges in interpreting segmenta-
tion metrics, as demonstrated in the following consensus 
paper on the subject [15]. In the present study we chose 
to include Dice score, Jaccard score and surface distance 
measurements, given their widespread usage in existing 
literature. However, it is important to highlight that in a 
clinical setting, the emphasis should lie on the applica-
tion at hand, such as swiftly generating high-quality ana-
tomical models for 3D printing or virtual planning of a 
surgical procedure rather than achieving a specific seg-
mentation performance score. Segmentation errors, such 
as incomplete bone filling or incorrect inclusion of left/
right markers in the segmentation, may lead to notable 
penalties. Such inconsistencies may typically be easily 
fixed with minor manual editing.

The distance measurements presented in Table  5 
relates to the distance difference between the surface of 
the automated segmentation and ground truth segmen-
tation. All models achieved low average median distance 
meaning the automated segmentation coincides well with 
the manual segmentation. The 95th percentile distance 
is indicative of the model’s potential limitations, with 
the understanding that 95% of the data points fall below 
this measured distance, highlighting the upper boundary 

of error in the model’s predictions. This measure may be 
problematic in the case where, for instance, a detail such 
as a smaller vessel may be missed in the automatic seg-
mentation, whereas it is present in the ground truth. This 
is the case in the congenital heart defect segmentation, 
where the segmentation often miss small vessels in the 
lungs that does not have any clinical significance.

Interpretation of results
In relation to this study, we therefore urge that the Dice 
and Jaccard scores be interpreted cautiously. The met-
rics, while widely used, can be influenced by factors 
such as cropping and post-processing, both of which we 
employed in this study See Fig. 9. Although these meas-
ures offer a standardized evaluation method, our primary 
goal was not to achieve high segmentation scores per se. 
Rather, we aimed to demonstrate that even with limited 
training data, it is possible to achieve clinically useful 
segmentation results in a 3D printing context. Therefore, 
while Dice and Jaccard scores are reported for compara-
bility, our focus remains on practical segmentation per-
formance for 3D printing applications, rather than on 
optimizing these metrics alone. Furthermore, our results 
merely reflects a single training and it recently has been 

Fig. 20 Lowest scoring segmentations in the categories Congenital Heart Defects, Fetal Anatomy and Pulmonary-tracheal Structures. Left column 
shows a representative DICOM slice, middle column shows automated segmentation results including post-processing, and the right column 
shows the manual segmentation
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shown that repeated training with the exact same data 
can generate statistically different models [16].

Moreover, segmentation performance of bones and 
soft tissue organs such as the pancreas or liver should 
not be directly compared as they present different levels 
of segmentation difficulty. Most of the examples used in 
this study comprise structures in IV-contrast settings, 
however, also included in the study were non-bone, non-
contrast enhanced structures - specifically eye-class in 
the Oculo-Cranial Structures category and fetuses in the 
Fetal anatomy category. These categories are more com-
plex structures, albeit with greater boundary contrast 
than soft-tissue organs as they are enclosed within cavi-
ties that provide clear anatomical boundaries.

The structures used in this study suggest that the net-
works learn a combination of intensity, local structure, 
and texture features to classify voxels into appropriate 
structures. This is evident, for example, in the congeni-
tal heart disease segmentation task, where the network 
successfully distinguishes bones from contrast-enhanced 
vessels, even though these structures overlap completely 
in intensity. Such separation would only be possible 
through learning a combination of intensity and local 
texture. Another example is the network’s ability to seg-
ment and fill bone structures, which is not possible using 
only intensity thresholding.

Importantly, we do not expect the networks in our 
setup to learn specific anatomical relationships, as these 
are likely lost in the augmentation process. While not 
learning anatomy could be seen as a drawback, in a 3D 
printing context, it may actually be an advantage since 
the applications often involve grossly abnormal anatomy. 
For instance, our test data include cases of severe scolio-
sis and complex congenital heart defects, such as hetero-
taxy syndrome.

Generalizability
A model with excellent generalizability gives quantita-
tively the same performance regardless of which case 
it is used on. We can see that the generalizability of the 
models produced by the framework is good as the results 
are consistently good for all subjects in the test cases. For 
instance the model achieved good scores in segmentation 
of a knee even though the model had not been trained 
on any knee. This indicates that rather than learning 
anatomy, the models have learned how to locally clas-
sify tissue types based on texture and pixel intensities. 
This an important trait that allows the framework pro-
duce models that are able to handle a large variability 
in anatomy such a broken orbital floor or vessels in the 
case of congenital heart defects. Although the knee case 
was used to highlight this fact, testing the model trained 
on three subjects (’n=3 model’) is essentially a zero-shot 

analysis. The model was trained using data that included 
only arms, pelvis, and feet, along with parts of the tibia 
and fibula, and was presented with anatomies it has not 
encountered before.

Although the generalizability of the framework is good, 
it is not perfect. In order to understand limitations, gen-
eralizability and potential failure modes, we investigated 
the patients where we got the lowest Dice score for each 
application (Figs. 19 and 20).

• In the orthopedic test data with the lowest Dice score 
we can see that there is a somewhat challenging 
image quality in combination with poor bone quality 
that likely explains the poor result. For the orbital test 
data with the lowest Dice score we can see that it is 
challenging to see the eyes, in combination that the 
volume is cropped and do not fully cover the left eye.

• In the mandible test data with the lowest Dice score 
we can see that for parts of the skull have been incor-
rectly classified as mandible. We can also see that the 
part of a skull support is segmented as skull. In addi-
tion, when reviewing the image closely, the right con-
dyle contains a bony-mass that is not segmented.

• In the cardiac test data with the lowest Dice score 
the liver is unusually contrast filled and incorrectly 
included in the automatic segmentation. There are 
also some smaller vessels that are missing.

• In the fetal dataset with the lowest Dice score the 
image quality is difficult and specifically there are sig-
nificant motion artifacts in the head region.

• In the lung case with the lowest Dice score the HU 
units are outside normal range as the images is from 
a new born baby only hours old. In addition, there is 
a contrast filled catheter in the esophagus that may 
confuse the network.

In summary, these segmentations were harder to perform 
due to one or more out of the following possible reasons:

• low image quality or imaging artifacts,
• image properties are different to the training data 

such as image resolution, image intensity, image con-
trast,

• the input volume is significantly outside of the 
domain of the training data such as new anatomy, 
significant pathology that alters the image, or con-
trast agent differences.

One of the general approaches to tackle limited gener-
alizability in deep learning is to add more training data. 
Here, the results from the skeletal structure use case, 
where 5 networks were trained with different amount 
of training data, provide some insight. Interestingly, 



Page 17 of 18Ekman et al. 3D Printing in Medicine            (2025) 11:9  

the network trained with only 3 (“n=3 model”) sub-
jects achieved a good score not far off the results from 
the network trained with 40 subjects (“n=40 model”). 
The results is shown in Table 6 and Fig. 11. The scores 
were relatively constant with only 2 percent difference 
in average dice score between “n=3 model” and “n=40 
model”. The models are compared on a per-patient basis 
in Fig. 12.

The “n=40 model” performed better on patients #6, 10, 
12 and 13. These patients were the patients where the ini-
tial model struggled to segment as shown in Fig. 10. This 
points to the fact that the increase of performance is most 
prominent on the cases that are the hardest to segment to 
begin with. This is further illustrated in Fig. 13 where on 
the x-axis the Jaccard score for the “n=40 model” and on 
the y-axis is the increase in performance between “n=40 
model” and “n=3 model”. The “n=3 model” slightly out-
performed the “n=40 model” for three patients in par-
ticular patient #2 (Fig.  12). This highlights a trade-off 
between generalizability and performance and suggests 
that adding data to the training set may not consistently 
enhance performance across all test objects in the test 
set.

The implication is that if a user wants to segment 
challenging cases, an expansion of the training set with 
challenging cases could be beneficial. However, if the 
user wishes to segment easier cases, not much improve-
ment could be expected from expanding the data set. 
Adding too many simple cases might in fact reduce the 
performance in challenging cases. What specific charac-
teristics constitute easy and challenging cases are typi-
cally unknown and likely problem specific.

From the users point of view, in a clinical setting it 
might be better to have multiple algorithms for specific 
use cases, such as one algorithm trained with contrast on 
board and one without contrast on board for the same 
anatomical region rather than having one sub-optimal 
algorithm. Furthermore, the models can improve as new 
data is made available. In extension this also relates to the 
requirements set by the intended end use case, such as 
surgical guides for orthopedics or preoperative planning 
for congenital heart defect surgeries. Future investiga-
tions may include determining what training data should 
be included to achieve higher performance at particular 
segmentation tasks.

Limitations
The fixed hyperparameters might not be optimally suited 
for every specific case, potentially leading to sub-optimal 
results in some scenarios. Further research could explore 
balancing adjustable hyper-parameters as well as includ-
ing the parameters in the training.

Except for the fetal anatomy network where 5-fold 
cross-validation was used, the models were trained only 
once. It is known that the randomness involved in the 
training process can give improved results just by retrain-
ing the model.

Further investigations should include cases such as soft 
tissue organs (pancreas, liver, kidneys etc.) where the 
delineation of target organ and surrounding tissue may 
be not as clear as the structures used in this paper.

As measuring Dice score, Jaccard score and surface 
distances are the most commonly used evaluation met-
rics, the same methodology was used here. Further work 
could include quantitative and qualitative user metrics 
for individual use cases. Some studies validate model per-
formance by comparing timings of manual versus auto-
matic segmentation [16].

Implications
The presented 3D deep learning segmentation frame-
work alleviates many of the challenges in applied medi-
cal image segmentation. Especially the ability to achieve 
high accuracy using limited number of training subjects 
addresses a significant bottleneck in providing clinically 
relevant segmentation algorithms. As the high quality 
results was archived across diverse organs and tissues 
with little to no tuning of hyper parameters we eliminate 
the need for developing specialized training pipelines for 
each application.

The key implication of the framework is its potential to 
accelerate and streamline clinical workflows. By reducing 
the data and computational requirements, the approach 
significantly lowers the entry barriers for adoption AI-
driven segmentation techniques. Adding a new application 
essentially becomes a plug-and-play process where all that 
is needed is a small set of training data that is in the order 
of tens of subjects. Subsequently, it becomes possible to 
develop and train dedicated segmentation algorithms for 
niched clinical applications such as 3D printing.

Conclusion
In this study, we introduced a deep learning framework 
for general 3D medical segmentation. The framework 
demonstrated high performance across a spectrum of 
clinical use cases, showing promise in automating medi-
cal image segmentation tasks. By circumventing the need 
for large training datasets and powerful computational 
resources, our approach offers an avenue for easier adop-
tion within healthcare systems.

Abbreviations
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3D  3 dimensional
CNN  Convolutional neural network
CT  Computed tomography
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